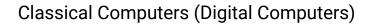
Simulated Design of Quantum networks

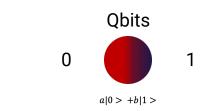

Senior Design team sddec 23-17

Benjamin Amick (Team leader / Network engineer) CYBE Ohik Kwon (Quantum information system engineer) EE Steven Tompary (Network engineer) CYBE Derrick Wright (System integration engineer) SE

Team leader email : bcamick@iastate.edu

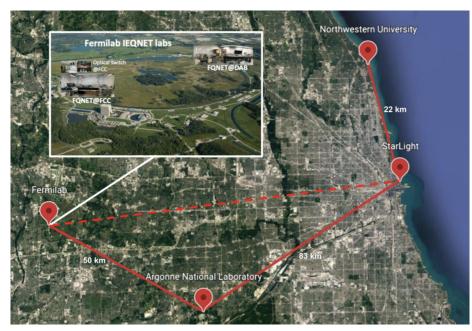
Explanation of Quantum Network

Network that taking leverage of 'nature of quantum'

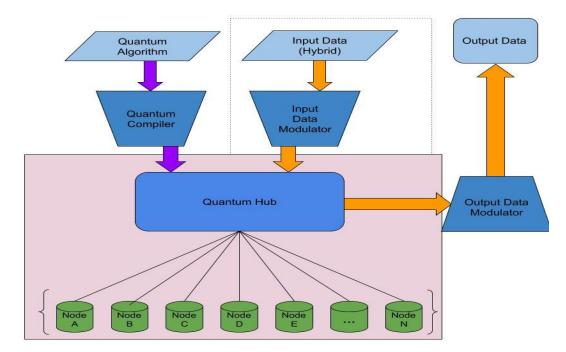


Bits

Or


0

(Security) We can communicate secretly by without breaking quantum information. OR (Condensed communication) we can have a much higher density of information. N Qbits -> 2^N classical bits


Explanation of Quantum Network

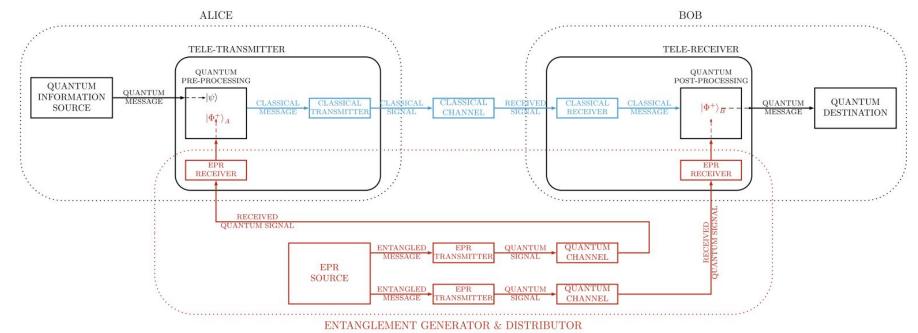
Design Context

- Clients: Dr. Durga and Dr. Smith
 - Doing intensive **researches** regarding quantum computers.
 - Major interest : Quantum computation and Quantum information theory
 - They are making Ion trap to hold Q-bits. They want to research quantum cluster computing.
- Needs
 - Design a quantum network **simulation** to communicate with quantum cluster computers. These computers will have both classical and quantum components.

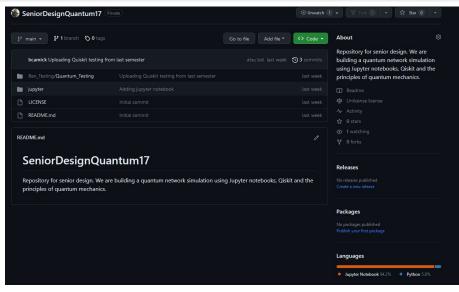
Explanation of Quantum Network - Network diagram

Quantum network for quantum cluster computing Project Timeline

Phase	Aug	Sept		Oct	Nov		Dec
Quantum communication network phase1	Build 2Qbit communication network						
Quantum router phase 1	Build quantum quantum router (2 nodes)						
Integration phase1		Integrate two rudimentary components	Testing and get feedback				
Improvement				Implement advanced features			
Improvement				Enabling N - nodes			
Integration phase2					Integrate two components	Create dummy job for presentation	
Documentation							Write technical documents for our clients to make them to use for their research
Research	Research and study quantum compu	utation and cluster	networking				


Working strategy / Meeting schedules

- Two meetings a week
 - $\circ \quad \text{One with advisor} \quad$
 - One with just students
- Irretive design philosophy


• 1 to 1, 1 to n, n to n

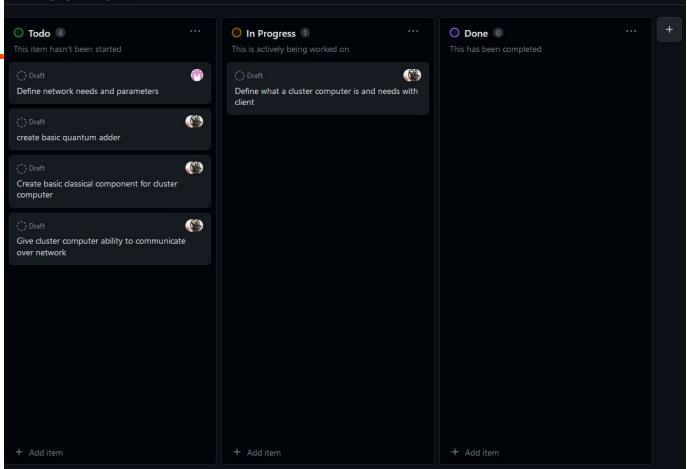
1st iteration plan

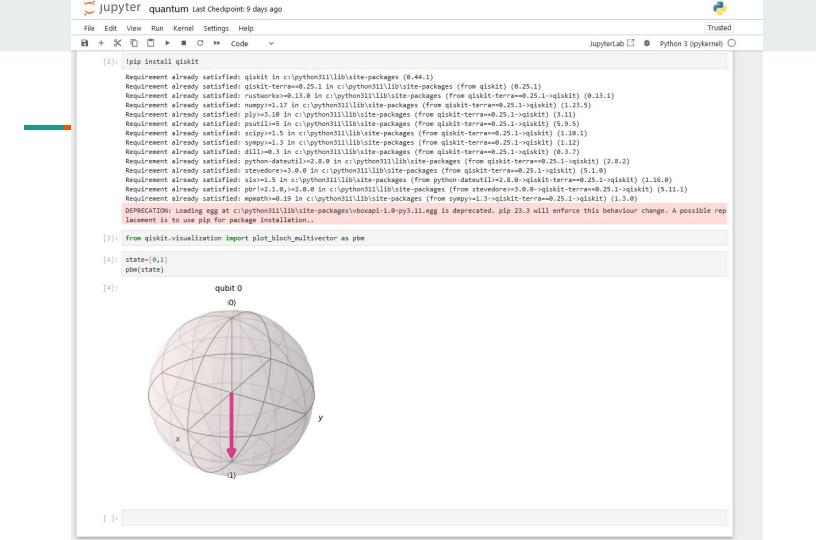
DOI: <u>10.1109/TCOMM.2020.2978071</u>

Iteration plan - details

The environment we are using will be Jupyter notebook and our version control will be done using git.

We are using a github board to manage and assign tasks to individuals.


Our plan is to create a basic cluster computer (in code) that has the ability to communicate with our network and can select and perform different quantum computational tasks and return the result.


AGILE- We want to work in two week sprints and are working in teams of two.

🖰 Quantum

🛄 View 1 🔄

Filter by keyword or by field

Technical difficulties

Quantum

- We don't have a quantum computer to use, we will need to rely on simulations
- Quantum information is very easy to break

Classical

- Every Quantum device needs an underlying classical network
- Interaction between quantum and classical is very hard to do
- The classical network will need to be able to keep up with the quantum network

Goals for this semester

- 1. One to One quantum communication
- 2. One to many quantum communication
- 3. Modularize the quantum nodes
- 4. Error correction
- 5. Testing with many (100+) quantum nodes

Thank you !